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Abstract
Using deformations of associative products, derivative nonlinear Schrödinger
(DNLS) hierarchies are recovered as AKNS-type hierarchies. Since the latter
can also be formulated as Gelfand–Dickey-type Lax hierarchies, a recently
developed method to obtain ‘functional representations’ can be applied.
We actually consider hierarchies with dependent variables in any (possibly
noncommutative) associative algebra, e.g., an algebra of matrices of functions.
This also covers the case of hierarchies of coupled derivative NLS equations.

PACS number: 02.30.Ik

1. Introduction

An AKNS hierarchy (see [1–7], for example) is given by (a multi-component generalization
of)

∂tn(V ) = [(ζ nV )�k, V ] n = 1, 2, . . . (1.1)

with independent variables tn, an indeterminate ζ , a formal power series V in ζ−1 with
coefficients in a Lie algebra G and a projection ( )�k to terms containing only powers �k of ζ ,
where k = 0 or k = 1. The Lie bracket used in (1.1) may depend nontrivially on ζ . Integrable
models obtained via such deformations have been studied in [8–10] and [11–14] (see also the
references in these papers). We demonstrate that in this way one can also recover hierarchies
associated with derivative nonlinear Schrödinger equations (DNLS). Instead of working with
deformations of a Lie algebra, we consider deformations of an associative algebra (which
then, via the commutator, induce a Lie algebra structure). Although this somewhat restricts
the possibilities, it allows some technical steps which greatly simplify the analysis (see also
the remark in section 2). The problem of deformations of associative products also arises in
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the context of compatible Poisson structures, which is of relevance in the theory of integrable
systems too (see [15–17], in particular).

In this work, we derive moreover functional representations of DNLS hierarchies. These
are generating equations, dependent on auxiliary parameters, which determine the hierarchy
equations directly in terms of the relevant dependent variables (see also [18–26]). We make
use of a method developed in [27], which will be recalled in section 3.1. Here, it is of relevance
that AKNS hierarchies can be reformulated as ‘Gelfand–Dickey-type’ hierarchies (see (2.11)).

We actually derive functional representations for hierarchies with dependent variables
in any (possibly noncommutative) associative algebra (see also [28–30], for example).
Specialization to matrix algebras then covers cases of coupled systems of equations. These
are also a possible source of new integrable equations. A further motivation is provided by
the operator method [31–33] which associates with a (scalar) nonlinear equation an operator
version and then a suitable map from solutions of the latter to solutions of the former. For
this method it is prerequisite, of course, to find an ‘integrable’ generalization of the respective
equation with dependent variable in a noncommutative associative algebra.

Section 2 shows how derivative NLS hierarchies can be expressed as AKNS-type
hierarchies by taking the possibility of deformations in the sense mentioned above into account.
In subsections we obtain matrix versions of hierarchies associated with three variants (Chen–
Lee–Liu, Gerdjikov–Ivanov and Kaup–Newell) of DNLS equations in this way. Section 3
recalls some results from [27] which are then used to derive functional representations of
the DNLS hierarchies. Section 4 contains some concluding remarks. Appendix A provides
elementary material on deformations of products, as used in the main part of this work. As
outlined in appendix B, in cases where it is possible to ‘undeform’ the product, contact with
other formulations of the respective hierarchies can be established.

2. Derivative NLS hierarchies as AKNS-type hierarchies

Let (A, •) be an associative algebra (over a field K of characteristic zero, typically R or C)
with unit J . The product • trivially extends to the algebra Â := A[ζ, ζ−1]] of polynomials in
an indeterminate ζ and formal power series in ζ−1 (with coefficients in A). In the following,
we consider an AKNS-type hierarchy

∂tn(V ) = [(ζ nV )�k, V ]• = −[(ζ nV )<k, V ]• n = 1, 2, . . . , (2.1)

where [X, Y ]• := X •Y −Y •X. Without restriction of generality we may take V of the form

V = u0 + u1ζ
−1 + u2ζ

−2 + u3ζ
−3 + · · · (2.2)

with un ∈ A. Note that (2.1) is invariant under an additive shift of V by some constant
element in the centre of Â, e.g., any multiple of the unit element. As a consequence, there is
a certain arbitrariness in the choice of u0 in (2.2). For example, the original AKNS hierarchy
(cf [3], for example) is obtained with an algebra of 2 × 2 matrices and u0 = diag(1,−1) (up
to multiplication by −ı), but we may choose u0 = diag(1, 0) as well. In this work we actually
concentrate on examples based on algebras of 2×2 matrices, but with entries in an associative
and typically noncommutative algebra3.

Equation (2.1) indeed defines a hierarchy, i.e. the flows mutually commute, if Â admits
a direct sum decomposition Â = Â− ⊕ Â+, where Â− := (Â)<k and Â+ := (Â)�k are
subalgebras, i.e.,

Â− • Â− ⊂ Â−, Â+ • Â+ ⊂ Â+. (2.3)

3 In the case of N × N matrices with N > 2, we should extend (2.1) to a multi-component version, see [6], for
example.
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This is the case if k ∈ {0, 1}. Let us now allow deformed associative products, with the
indeterminate ζ as the deformation parameter.

k = 0. Let •(0) and •(−1) be two compatible associative products in A ([15–17], see also
appendix A). Then, the new product

A • B := A •(0) B + A •(−1) Bζ (2.4)

is associative for all ζ and, extended to Â, satisfies

(X�0 • Y�0)�0 = X�0 • Y�0, (X<0 • Y<0)<0 = X<0 • Y<0 (2.5)

for all X, Y ∈ Â, so that the subalgebra conditions (2.3) are preserved. Any other
ζ -dependence of the new product but the linear one would spoil one of these relations.
Concerning our notation, assigning the index −1 to the second product is in accordance with
an effective ζ -grading4.

k = 1. Given two compatible associative products •(0) and •(1) in A, the new product

A • B := A •(0) B + A •(1) Bζ−1 (2.6)

is associative for all ζ and, extended to Â, satisfies

(X�1 • Y�1)�1 = X�1 • Y�1, (X<1 • Y<1)<1 = X<1 • Y<1 (2.7)

for all X, Y ∈ Â, so that (2.3) is preserved. In fact, the ζ -dependence in (2.6) is the only one
with this property.

In the following, we assume that V is given by a dressing

V = W • P • W •−1 (2.8)

where W is an invertible formal power series in ζ−1 with inverse W •−1 (with respect to the
product •) and P ∈ A is constant and idempotent, i.e.,

P • P = P. (2.9)

Then (2.8) leads to

V • V = V. (2.10)

Introducing L := V ζ , this implies5 L•n = ζ nV , so that the AKNS-type hierarchy (2.1) can
be equivalently expressed as

Ltn = [(L•n)�k, L]• n = 1, 2, . . . . (2.11)

This observation will be important in section 3.

Remark. In view of the structure of (2.1), it seems to be more natural and more general
to replace the associative algebra A by a Lie algebra which splits into a direct sum of Lie
subalgebras. Of course, the commutator with respect to the product • in A induces a Lie
algebra structure, but not every Lie algebra can be obtained in this way. Deformations of
Lie algebras in the context of integrable systems have been studied in particular in [8–10]
and [11–14]. The two classes of Lie algebras obtained from the deformations of associative
algebras considered above are quasigraded of type (1, 0), respectively (0, 1), in the sense of
the latter references. Although in (2.9) and (2.10) we do make explicit use of an associative
algebra structure, the subsequent results in this section can also be obtained in a Lie algebraic
framework, though with some more efforts6. The deeper reason for our choice of the associative
algebra framework is the applicability of the methods developed in [27] to compute functional
representations (see section 3). This choice is already required for the conversion of (2.1)
into (2.11).
4 For example, taking this convention into account, the sum of all indices of each summand of (2.15) or (2.17) equals
n + 1. This helps to keep account of the possible terms.
5 Here L•n denotes the n-fold product L • L · · · • L.
6 The methods developed in [11–14] can certainly also be used to derive the results of this section.
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2.1. The case k = 0

Equation (2.10) leads to

u0 •(−1) u0 = 0, (2.12)

n∑
j=0

uj •(0) un−j +
n+1∑
j=0

uj •(−1) un−j+1 = un n = 0, 1, 2, . . . . (2.13)

The hierarchy equations (2.1) imply, in particular,

u0,x = [u0, u2](−1), (2.14)

un,x = [u0, un+1](0) +[u1, un](0) +[u0, un+2](−1) +[u1, un+1](−1) n = 1, 2, . . . (2.15)

and

u0,tn = [u0, un+1](−1), (2.16)

u1,tn = [u0, un+1](0) + [u0, un+2](−1) + [u1, un+1](−1) n = 1, 2, . . . . (2.17)

Combining (2.15) and (2.17) leads to

u1,tn = un,x − [u1, un](0) n = 1, 2, . . . . (2.18)

If we assume in addition that

u0 = P (2.19)

and

P •(−1) A = 0 = A •(−1) P ∀A ∈ A, (2.20)

then (2.12), (2.13) for n = 0, (2.14) and (2.16) are satisfied (by use of (2.9)).

2.1.1. Chen–Lee–Liu DNLS hierarchy. Let A be a matrix algebra. We define the product •
by7

A • B := APB + A(I − P)Bζ (2.21)

with the unit matrix I and a fixed matrix P. For ζ = 1, this is the usual matrix product. It
is easily checked that the deformed product is indeed associative (see also appendix A). If
P 2 = P , then (2.9) holds and (A, •) is unital with unit

J = P + (I − P)ζ−1. (2.22)

Furthermore, (2.20) holds. Now we turn to a more concrete example by choosing

u0 = P =
(

1 0
0 0

)
. (2.23)

Equation (2.13) with n = 1 is then solved by

u1 =
(−qr q

r 0

)
, (2.24)

7 The corresponding Lie algebra version is a special case of the Lie algebra deformations considered in [12, 14], for
example.
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where q and r are M × N , respectively N × M matrices, with entries from a possibly
noncommutative unital algebra (over K). Equation (2.13) with n = 2 leads to

u2 =
(−(qr)2 − qc − br b

c rq

)
(2.25)

where the entries b, c still have to be determined. Now we use (2.15) with n = 1 to obtain

u2 =
(

qrx − qxr + (qr)2 qx − qrq

−rx − rqr rq

)
. (2.26)

Equation (2.18) for n = 2 then takes the form8

qt2 − qxx + 2qxrq = 0, rt2 + rxx + 2rqrx = 0. (2.27)

These are ‘noncommutative’ (e.g., matrix) versions of a system of coupled derivative nonlinear
Schrödinger (DNLS) equations, generalizing the Chen–Lee–Liu equation [34–36].9 In the next
step we obtain

u3 =
(

a b

c d

)
(2.28)

where

a := −qrxx − qxxr + qxrx + 2qxrqr − 2qrqrx + qdr, (2.29)

b := qxx − 2qxrq − qd, (2.30)

c := rxx + 2rqrx − dr, (2.31)

d := rqx − rxq − (rq)2. (2.32)

Equation (2.18) for n = 3 then becomes the system

qt3 − qxxx + 3qxxrq + 3qxrqx − 3qx(rq)2 = 0, (2.33)

rt3 − rxxx − 3rqrxx − 3rxqrx − 3(rq)2rx = 0. (2.34)

2.1.2. Gerdjikov–Ivanov DNLS hierarchy. Let A be a matrix algebra, σ ∈ A such that

σ 2 = I, (2.35)

and

A(−) := 1
2 (A − σAσ), A(+) := A − A(−), (2.36)

for A ∈ A. This provides us with a decomposition A = A(+) ⊕ A(−). Then,

A • B := (AB − A(−)B(−)) + A(−)B(−)ζ (2.37)

defines an associative deformation of the matrix product (see also appendix A)10. The unit
matrix I is also a unit element with respect to the deformed product, hence J = I . Furthermore,
P := (I + σ)/2 satisfies P (−) = 0 and thus P • P = P 2 = P .

8 These equations are of ‘Schrödinger type’ after replacing t2 by ıt2 with the imaginary unit ı. In the case M = N ,
the reductions q = 1 or r = 1, where 1 stands for a unit element, lead to noncommutative versions of the Burgers
equation.
9 This includes the case of vector DNLS equations (M = 1 or N = 1). See also [37] and the references cited therein
for the physical relevance of vector NLS equations.
10 For 2×2 matrices, the products AB −A(−)B(−) and A(−)B(−) appeared as examples in [15], in a different context.
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Choosing

u0 = P =
(

1 0
0 0

)
, σ =

(
1 0
0 −1

)
, (2.38)

(2.13) for n = 1 leads to

u1 =
(−qr q

r rq

)
. (2.39)

From (2.13) with n = 2, and (2.15), we find

u2 =
(

qrx − qxr − (qr)2 qx

−rx rqx − rxq + (rq)2

)
. (2.40)

According to (2.18), the first system of the hierarchy is

qt2 − qxx − 2qrxq + 2(qr)2q = 0, (2.41)

rt2 + rxx − 2rqxr − 2r(qr)2 = 0, (2.42)

which generalizes the Gerdjikov–Ivanov equation, a derivative nonlinear Schrödinger equation
with an additional potential term [28, 38–45].

2.2. The case k = 1

From (2.10), we obtain

u0 •(0) u0 = u0, (2.43)

n∑
j=0

uj •(0) un−j +
n−1∑
j=0

uj •(1) un−j−1 = un n = 1, 2, . . . , (2.44)

and the hierarchy equations (2.1) lead to

un,x = [u0, un+1](0) + [u0, un](1) n = 0, 1, 2, . . . (2.45)

and

u0,tn = [u0, un](0) n = 1, 2, . . . . (2.46)

Combined with (2.45), this yields

u0,tn+1 − un,x + [u0, un](1) = 0 n = 0, 1, 2, . . . . (2.47)

2.2.1. Kaup–Newell hierarchy. Now we choose the product • as in section 2.1.2, but with ζ

replaced by ζ−1.11 Hence,

A •(0) B := AB − A(−)B(−) = A(+)B(+) + A(+)B(−) + A(−)B(+), (2.48)

A •(1) B := A(−)B(−). (2.49)

Furthermore, (2.45) and (2.46) split as follows:

u(+)
n,x = [

u
(+)
0 , u

(+)
n+1

]
+ [u(−)

0 , u(−)
n ], (2.50)

‘
11 The choice of the product used in section 2.1.1 reproduces the results obtained there.
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u(−)
n,x = [

u
(+)
0 , u

(−)
n+1

]
+

[
u

(−)
0 , u

(+)
n+1

]
, (2.51)

where n = 0, 1, . . . , and

u
(+)
0,tn

= [
u

(+)
0 , u(+)

n

]
, (2.52)

u
(−)
0,tn

= [
u

(+)
0 , u(−)

n

]
+

[
u

(−)
0 , u(+)

n

] = u
(−)
n−1,x , (2.53)

where n = 1, 2, . . . . Choosing moreover

P =
(

1 0
0 0

)
, σ =

(
1 0
0 −1

)
, (2.54)

equation (2.43) and also (2.50) for n = 0 are solved by

u0 =
(

1 q

r 0

)
. (2.55)

where q, r are (M × N , respectively N × M) matrices with entries from a (possibly
noncommutative) associative algebra. From (2.44) we obtain u1 = u0 •(0) u1 + u1 •(0) u0 +
u0 •(1) u0. Together with (2.51) for n = 0, this entails

u1 =
( −qr qx − 2qrq

−rx − 2rqr rq

)
. (2.56)

Now (2.53) leads to

qt2 = qxx − 2(qrq)x, rt2 = −rxx − 2(rqr)x (2.57)

which generalizes the Kaup–Newell derivative NLS equation [46–49].

3. Functional representations of the derivative NLS hierarchies

After recalling a result from [27], we apply it to compute functional representations of the
(matrix) DNLS hierarchies considered in section 2.

3.1. Preliminaries

In [27] we showed that an integrable hierarchy, from a class which includes (2.11), implies
(and is typically equivalent to)

E(λ2)−[λ1] • E(λ1) = E(λ1)−[λ2] • E(λ2), (3.1)

where λ1 and λ2 are indeterminates and

E(λ) = J +
∑
n�1

λnEn (3.2)

is a formal power series with coefficients

En = (Ẽn)+ n = 1, 2, . . . , (3.3)

recursively determined via

Ẽ1 = −L, Ẽn+1 = (Ẽn)− • L n = 1, 2, . . . . (3.4)

Furthermore, we used the following notation (see also [20, 27, 50, 51], for example). For F
dependent on t := (t1, t2, t3, . . .), we define

F[λ](t) := F(t + [λ]) =
∑
n�0

λnχn(F ), F−[λ](t) := F(t − [λ]) (3.5)
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(as formal power series in λ) with

[λ] := (λ, λ2/2, λ3/3, . . .) (3.6)

and

χn := pn(∂̃), ∂̃ := (
∂t1 , ∂t2

/
2, ∂t3

/
3, . . .

)
, (3.7)

where pn, n = 0, 1, 2, . . ., are the elementary Schur polynomials (see [20, 52, 53], for
example).

It is helpful to express (3.1) in terms of

Ê(λ) := E(λ)[λ], (3.8)

so that it takes the form

Ê(λ2) • Ê(λ1)[λ2] = Ê(λ1) • Ê(λ2)[λ1]. (3.9)

Remark. (3.1) (or (3.9)) should be regarded as a finite (i.e. group) analogue of an infinitesimal
(i.e., Lie algebraic) zero curvature equation. E(λ) (or Ê(λ)) lies in the group of invertible
elements of the algebra Â. In certain cases it should be possible to regard this group as a
(formal) Lie group of a (loop) Lie algebra Ĝ = Ĝ+ ⊕ Ĝ−. More precisely, E(λ) would then be
an element of the group generated by Ĝ+. However, such a Lie algebraic relation may impose
unnecessary and inconvenient restrictions on E(λ). In the subsequent calculations it is not at
all required.

3.2. The case k = 0

We have

E(λ) = J − (u0ζ + u1)λ +
∑
n�2

(Ẽn)�0λ
n (3.10)

and En = (Ẽn)�0 is linear in ζ for n = 2, 3, . . .. This follows from

(Ẽn+1)�0 = ((Ẽn)<0 • (u0ζ + u1))�0

= res(Ẽn) •(−1) u0ζ + res(Ẽn) •(0) u0 + res(Ẽnζ ) •(−1) u0 + res(Ẽn) •(−1) u1,

(3.11)

where res(X) takes the coefficient of the ζ−1 part of X. Let us write

Ê(λ) = J − (v(λ)ζ + w(λ))λ (3.12)

where v(λ) = ∑
n�0 vnλ

n and w(λ) = ∑
n�0 wnλ

n are (formal) power series in λ with v0 = u0

and w0 = u1. Now (3.9) splits into the four equations

v(λ2) •(−1) v(λ1)[λ2] = v(λ1) •(−1) v(λ2)[λ1], (3.13)

v(λ2) •(0) v(λ1)[λ2] + v(λ2) •(−1) w(λ1)[λ2] + w(λ2) •(−1) v(λ1)[λ2] = v(λ1) •(0) v(λ2)[λ1]

+ v(λ1) •(−1) w(λ2)[λ1] + w(λ1) •(−1) v(λ2)[λ1], (3.14)

λ−1
1

(
v(λ2)[λ1] − v(λ2)

) − λ−1
2

(
v(λ1)[λ2] − v(λ1)

) = v(λ1) •(0) w(λ2)[λ1]

− v(λ2) •(0) w(λ1)[λ2] + w(λ1) •(0) v(λ2)[λ1] − w(λ2) •(0) v(λ1)[λ2]

+ w(λ1) •(−1) w(λ2)[λ1] − w(λ2) •(−1) w(λ1)[λ2], (3.15)

λ−1
1

(
w(λ2)[λ1] − w(λ2)

) − λ−1
2

(
w(λ1)[λ2] − w(λ1)

)
= w(λ1) •(0) w(λ2)[λ1] − w(λ2) •(0) w(λ1)[λ2]. (3.16)
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Assuming (2.19) and (2.20), equation (3.11) shows that

v(λ) = P, (3.17)

and the first two equations are identically satisfied. Furthermore, the third equation reduces to

P •(0)

(
w(λ2)[λ1] − w(λ1)[λ2]

)
+ (w(λ1) − w(λ2)) •(0) P = w(λ2) •(−1) w(λ1)[λ2]

−w(λ1) •(−1) w(λ2)[λ1]. (3.18)

In the limit λ2 → 0, equations (3.16) and (3.18) lead to

λ−1(w0,[λ] − w0) − w(λ)x = w(λ) •(0) w0,[λ] − w0 •(0) w(λ), (3.19)

respectively

P •(0) (w0,[λ] − w(λ)) + (w(λ) − w0) •(0) P = w0 •(−1) w(λ) − w(λ) •(−1) w0,[λ]. (3.20)

3.2.1. Functional representation of the Chen–Lee–Liu DNLS hierarchy. We choose A, the
product • and P as in section 2.1.1. Let us now turn to the derivation of a corresponding
functional representation of the hierarchy. We write

w(λ) =
(

p(λ) q(λ)

r(λ) s(λ)

)
, (3.21)

where the entries are power series in λ. In this case, (3.11) reads

En+1 = (Ẽn+1)�0 = res(Ẽn)P + res(Ẽn)(I − P)u1. (3.22)

Since (u1)22 = 0 according to (2.24), we easily deduce from this formula that

s(λ) = 0. (3.23)

Now (3.16) and (3.18) are turned into the following equations:

λ−1
2

(
p(λ1)[λ2] − p(λ1)

) − λ−1
1

(
p(λ2)[λ1] − p(λ2)

) = p(λ2)p(λ1)[λ2] − p(λ1)p(λ2)[λ1],

(3.24)

λ−1
2

(
q(λ1)[λ2] − q(λ1)

) − λ−1
1

(
q(λ2)[λ1] − q(λ2)

) = p(λ2)q(λ1)[λ2] − p(λ1)q(λ2)[λ1],

(3.25)

λ−1
2

(
r(λ1)[λ2] − r(λ1)

) − λ−1
1

(
r(λ2)[λ1] − r(λ2)

) = r(λ2)p(λ1)[λ2] − r(λ1)p(λ2)[λ1], (3.26)

r(λ1)q(λ2)[λ1] − r(λ2)q(λ1)[λ2] = 0, (3.27)

and

p(λ1)[λ2] − p(λ1) − p(λ2)[λ1] + p(λ2) = q(λ1)r(λ2)[λ1] − q(λ2)r(λ1)[λ2], (3.28)

q(λ1)[λ2] − q(λ2)[λ1] = 0, (3.29)

r(λ2) − r(λ1) = 0. (3.30)

As a consequence of (3.29) and (3.30), we have

q(λ) = q[λ], r(λ) = r, (3.31)

and (3.27) is automatically satisfied. Now (3.28) becomes

p(λ1)[λ2] − p(λ1) − p(λ2)[λ1] + p(λ2) = (qr)[λ1] − (qr)[λ2]. (3.32)

In the limit λ2 → 0, this yields −p0[λ] + p0 = (qr)[λ] − qr , which is solved by p0 = −qr ,
in accordance with the upper left entry of u1 in (2.24). The coefficient of the λn

1λ
m
2 term,

m, n ∈ N, of the above equation reads χn(pm) = χm(pn). Hence, there is a p such that

pn = χn(p) n = 1, 2, . . . , (3.33)
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and consequently

p(λ) = p[λ] − p − qr. (3.34)

Taking the limit λ2 → 0 of (3.24), (3.25) and (3.26), and using (3.31), we obtain

p(λ)x = −λ−1((qr)[λ] − qr) + p(λ)(qr)[λ] − qrp(λ), (3.35)

q[λ],x = λ−1(q[λ] − q) − (qr + p(λ))q[λ], (3.36)

rx = λ−1(r[λ] − r) + r(p(λ) + (qr)[λ]). (3.37)

Multiplying (3.36) by r from the right and (3.37) by q[λ] from the left, adding the results and
using (3.34), we get

(q[λ]r)x = (λ−1 + q[λ]r)((qr)[λ] − qr) + [q[λ]r, p[λ] − p]. (3.38)

With the help of (3.34) we rewrite (3.35) as follows:

p(λ)x = −(λ−1 − p(λ))((qr)[λ] − qr) + [p(λ), p[λ] − p]. (3.39)

Adding the last two equations provides us with

(p(λ) + q[λ]r)x = (p(λ) + q[λ]r)((qr)[λ] − qr) + [p(λ) + q[λ]r, p[λ] − p]. (3.40)

Expanding in powers of λ, using p0 = −qr and setting possible integration constants to zero12

leads to

p(λ) = −q[λ]r. (3.41)

Inserting this in (3.36) and (3.37), we obtain the following functional representation of the
hierarchy,

(q − q−[λ])(λ
−1 + r−[λ]q) = qx, (3.42)

(λ−1 + rq[λ])(r[λ] − r) = rx. (3.43)

By differentiation with respect to λ, we recover the corresponding equations in [24], obtained
in the case of commuting variables.

Remark. Expanding (3.24) and using (3.33), the coefficients of λm
1 λn

2,m, n � 1 entail

χn+1(χm(p)) − χm+1(χn(p)) =
n∑

j=1

χj (p)χn−j (χm(p)) −
m∑

j=1

χj (p)χm−j (χn(p)). (3.44)

This system is equivalent to the potential KP hierarchy (see section 3.3 in [27]).
Since (3.34) implies px = −qrx , it follows that

p = −
∫

qxr dx (3.45)

solves the potential KP hierarchy if q and r satisfy the above Chen–Lee–Liu DNLS hierarchy.

12 This would be enforced by imposing an auxiliary boundary condition like w(λ) → 0 as x → ±∞.
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3.2.2. Functional representation of the Gerdjikov–Ivanov DNLS hierarchy. We choose A,
the product • and P as in section 2.1.2. In order to determine a functional representation of
the hierarchy, we write again

w(λ) =
(

p(λ) q(λ)

r(λ) s(λ)

)
(3.46)

where the entries are (formal) power series in λ, and obtain from (3.18), as in section 3.2.1,

q(λ) = q[λ], r(λ) = r, p(λ) = p[λ] − p − qr. (3.47)

From (3.16) we obtain the system

λ−1
1

(
p(λ2)[λ1] − p(λ2)

) − λ−1
2

(
p(λ1)[λ2] − p(λ1)

) = p(λ1)p(λ2)[λ1] − p(λ2)p(λ1)[λ2],

(3.48)

λ−1
1

(
s(λ2)[λ1] − s(λ2)

) − λ−1
2

(
s(λ1)[λ2] − s(λ1)

) = s(λ1)s(λ2)[λ1] − s(λ2)s(λ1)[λ2], (3.49)

λ−1
1

(
q[λ1]+[λ2] − q[λ2]

) − λ−1
2

(
q[λ1]+[λ2] − q[λ1]

) = (p(λ1) − p(λ2))q[λ1]+[λ2]

+ q[λ1]s(λ2)[λ1] − q[λ2]s(λ1)[λ2], (3.50)

and

λ−1
1

(
r[λ1] − r

) − λ−1
2

(
r[λ2] − r

) = r
(
p(λ2)[λ1] − p(λ1)[λ2]

)
+ s(λ1)r[λ1] − s(λ2)r[λ2]. (3.51)

The λ1 → 0 limit of these equations leads to

(λ−1 − p(λ))x = (λ−1 − p(λ))((qr)[λ] − qr) + [λ−1 − p(λ), p[λ] − p], (3.52)

s(λ)x = λ−1[(rq)[λ] − rq] + rqs(λ) − s(λ)(rq)[λ], (3.53)

and

q[λ],x = λ−1(q[λ] − q) − (p(λ) + (qr)[λ] + qr)q[λ] + qs(λ), (3.54)

rx = λ−1(r[λ] − r) + r(p(λ) + (qr)[λ] + qr) − s(λ)r[λ]. (3.55)

Here, we made use of s0 = rq, p0 = −qr (see (2.39)) and (3.47). Multiplying (3.54) by r
from the left and (3.55) by q[λ] from the right, and adding the results, we get

(rq[λ])x = λ−1[(rq)[λ] − rq] + rqs(λ) − s(λ)(rq)[λ]. (3.56)

Comparing this with (3.53), we obtain

s(λ) = rq[λ], (3.57)

setting a constant of integration to zero. Now (3.54) and (3.55) take the form

q[λ],x = λ−1(q[λ] − q) − (p(λ) + (qr)[λ])q[λ], (3.58)

rx = λ−1(r[λ] − r) + r(p(λ) + qr). (3.59)

Multiplying the first equation by r from the right and the second by q[λ] from the left, adding
the results and using the last of the relations (3.47) leads to

(λ−1 − q[λ]r)x = −((qr)[λ] − qr)(λ−1 − q[λ]r) + [λ−1 − q[λ]r, p[λ] − p]. (3.60)

We multiply this in turn by λ−1 − p(λ) from the left, and (3.52) by λ−1 − q[λ]r from the right,
and add the results to obtain

[(λ−1 − p(λ))(λ−1 − q[λ]r)]x = [(λ−1 − p(λ))(λ−1 − q[λ]r), p[λ] − p]. (3.61)
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Integrating this order by order in λ leads to

(1 − λp(λ))(1 − λq[λ]r) = 1, (3.62)

or equivalently

p(λ) = −q[λ]r(1 − λq[λ]r)
−1 = −(1 − λq[λ]r)

−1q[λ]r. (3.63)

Inserting this expression in (3.58) and (3.59) yields the following functional form of the
hierarchy:

λ−1(q − q−[λ]) − q(r − r−[λ](1 − λqr−[λ])
−1)q = qx, (3.64)

λ−1(r[λ] − r) + r(q − (1 − λq[λ]r)
−1q[λ])r = rx. (3.65)

Again, we should stress that q and r may be M × N and N × M matrices of functions (or,
more generally, matrices with elements of any (noncommutative) associative algebra), where
M,N ∈ N.

Remark. In the same way as in section 3.2.1 (see the remark there), we find that

p = −
∫

(qxr + (qr)2) dx (3.66)

satisfies the potential KP hierarchy as a consequence of the above Gerdjikov–Ivanov DNLS
hierarchy.

3.3. The case k = 1

According to (3.3) and (3.4), we have

E0 = J, E1 = −L�1 = −u0ζ, E2 = ((Ẽ1)<1 • L)�1 = −u1 •(0) u0ζ, (3.67)

and

En+1 = ((Ẽn)<1 • L)�1 = ((Ẽn)<1 • u0ζ )�1 = res(Ẽnζ
−1) •(0) u0ζ n = 1, 2, . . . .

(3.68)

Hence,

Ê(λ) = E(λ)[λ] = J − λw(λ)ζ, w(λ) = u0 + λu1 •(0) u0 + · · · , (3.69)

where w(λ) does not depend on ζ . Now (3.9) yields the two equations

w(λ2) •(0) w(λ1)[λ2] − w(λ1) •(0) w(λ2)[λ1] = 0, (3.70)

and

λ−1
2 (w(λ1)[λ2] − w(λ1)) − λ−1

1 (w(λ2)[λ1] − w(λ2)) = w(λ2) •(1) w(λ1)[λ2]

−w(λ1) •(1) w(λ2)[λ1]. (3.71)

In the limit λ2 → 0, this becomes

u0 •(0) w(λ) = w(λ) •(0) u0,[λ] (3.72)

and

w(λ)x − λ−1(u0,[λ] − u0) = u0 •(1) w(λ) − w(λ) •(1) u0,[λ]. (3.73)
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3.3.1. Functional representation of the Kaup–Newell hierarchy. We choose A, the product
• and P as in section 2.2.1. Let us write

w(λ) =
(

p(λ) q(λ)

r(λ) s(λ)

)
(3.74)

where the entries are formal power series in λ. Since (u0)22 = 0 and En+1 = res(Ẽnζ
−1)•(0)u0,

we have

s(λ) = 0. (3.75)

Furthermore, q0 = q, r0 = r and p0 = 1 according to (2.55). From (3.70) and (3.71) we
obtain

p(λ2)p(λ1)[λ2] − p(λ1)p(λ2)[λ1] = 0, (3.76)

p(λ2)q(λ1)[λ2] − p(λ1)q(λ2)[λ1] = 0, (3.77)

r(λ2)p(λ1)[λ2] − r(λ1)p(λ2)[λ1] = 0, (3.78)

and

λ−1
2

(
p(λ1)[λ2] − p(λ1)

) − λ−1
1

(
p(λ2)[λ1] − p(λ2)

) = q(λ2)r(λ1)[λ2] − q(λ1)r(λ2)[λ1],

(3.79)

λ−1
2

(
q(λ1)[λ2] − q(λ1)

) − λ−1
1

(
q(λ2)[λ1] − q(λ2)

) = 0, (3.80)

λ−1
2

(
r(λ1)[λ2] − r(λ1)

) − λ−1
1

(
r(λ2)[λ1] − r(λ2)

) = 0, (3.81)

r(λ2)q(λ1)[λ2] − r(λ1)q(λ2)[λ1] = 0, (3.82)

respectively. Equation (3.76) (with p0 = 1) is solved by

p(λ) = ff −1
[λ] (3.83)

with some invertible f . Inserting this in (3.77), we obtain

(f −1q(λ2))[λ1] = (f −1q(λ1))[λ2], (3.84)

which implies

f −1q(λ) = q̃[λ] (3.85)

with some q̃ which is determined by taking the limit λ → 0,

q̃ = f −1q. (3.86)

Inserting (3.83) in (3.78), we obtain r(λ2)f[λ2] = r(λ1)f[λ1] and thus

r(λ) = r̃f −1
[λ] with r̃ := rf. (3.87)

As a consequence, (3.82) is automatically satisfied, and (3.79) takes the form

λ−1
2

(
f −1f[λ2] − (

f −1f[λ2]
)

[λ1]

) − λ−1
1

(
f −1f[λ1] − (

f −1f[λ1]
)

[λ2]

) = (q̃r̃)[λ2] − (q̃r̃)[λ1].

(3.88)

In the limit λ2 → 0, this yields

f −1fx − (f −1fx)[λ] = q̃ r̃ − (q̃r̃)[λ], (3.89)

and thus

f −1fx = q̃ r̃, (3.90)
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up to addition of a constant, which we set to zero. The last equation is equivalent to p1 = −qr .
Expansion of (3.88) leads to

χn(f
−1χm+1(f )) = χm(f −1χn+1(f )) m, n = 1, 2, . . . , (3.91)

which states that f has to solve the mKP hierarchy. Indeed, the last equation is a formulation
of the mKP hierarchy (see [27]). It implies the existence of a potential φ such that

χn+1(f ) = −f χn(φ) n = 1, 2, . . . , (3.92)

which, in functional form, reads

f[λ] = f + λfx − λf (φ[λ] − φ). (3.93)

Hence,

f −1f[λ] = 1 + λ(q̃r̃ − φ[λ] + φ). (3.94)

Using (3.90) and the last equation, we find

(f −1f[λ])x = −f −1fxf
−1f[λ] + f −1f[λ](f

−1fx)[λ]

= (f −1f[λ])((q̃r̃)[λ] − q̃ r̃) + [f −1f[λ], q̃r̃]

= (f −1f[λ])((q̃r̃)[λ] − q̃ r̃) + [f −1f[λ], φ[λ] − φ]. (3.95)

Furthermore, the λ2 → 0 limits of (3.80) and (3.81) are

q(λ)x = λ−1(q[λ] − q), r(λ)x = λ−1(r[λ] − r). (3.96)

Conversely, these equations imply (3.80) and (3.81), since the x-derivatives of the latter are
satisfied as a consequence of (3.96). Using (3.90) and (3.94), (3.96) becomes

q̃[λ],x = 1

λ
(q̃[λ] − q̃) − (φ[λ] − φ)q̃[λ], (3.97)

r̃x = 1

λ
(r̃[λ] − r̃) + r̃((q̃r̃)[λ] − q̃ r̃) + r̃(φ[λ] − φ). (3.98)

Multiplying the first equation by r̃ from the right, the second by q̃[λ] from the left and adding
the results, we obtain

(λ−1 + q̃[λ]r̃)x = (λ−1 + q̃[λ]r̃)((q̃r̃)[λ] − q̃ r̃) + [q̃[λ]r̃ , φ[λ] − φ]. (3.99)

Now we multiply (3.95) by λ−1 and subtract the resulting equation from the preceding one to
get

z(λ)x = z(λ)((q̃r̃)[λ] − q̃ r̃) + [z(λ), φ[λ] − φ] (3.100)

with the following power series in λ:

z(λ) := λ−1(1 − f −1f[λ]) + q̃[λ]r̃ . (3.101)

Expanding in powers of λ, a simple induction argument (using (3.90) and setting x-integration
constants to zero) now leads to z(λ) = 0 and thus

f −1f[λ] = 1 + λq̃[λ]r̃ , (3.102)

which, with the help of (3.85) and (3.87), can be written in the form13

p(λ) = 1 − λq(λ)r(λ). (3.103)

From (3.85) and (3.87), using (3.83), we get

q(λ) = p(λ)q[λ] = (1 − λq(λ)r(λ))q[λ], r(λ) = rp(λ) = r(1 − λq(λ)r(λ)). (3.104)

13 In the case of commuting variables, this formula can be derived in a much simpler way.
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Introducing potentials via

q = Qx, r = Rx, (3.105)

equations (3.96) can be integrated to give

q(λ) = λ−1(Q[λ] − Q), r(λ) = λ−1(R[λ] − R). (3.106)

Inserting this in (3.104), we arrive at the following functional representation of the hierarchy:

(Q − Q−[λ])(1 + (R − R−[λ])Qx) = λQx, (3.107)

(1 + Rx(Q[λ] − Q))(R[λ] − R) = λRx. (3.108)

Expansion in powers of λ leads, in lowest order, to

Qt2 = Qxx − 2QxRxQx, Rt2 = −Rxx − 2RxQxRx, (3.109)

which is the potential form of (2.57).

4. Conclusions

Via deformations of associative products, we expressed derivative NLS hierarchies in the
form of AKNS hierarchies and then also as ‘Gelfand–Dickey-type’ hierarchies (in the sense
of (2.11)). We then applied a method to compute functional representations of ‘Gelfand–
Dickey-type’ integrable hierarchies to the derivative NLS hierarchies. For the Chen–Lee–Liu
DNLS hierarchy, we recovered corresponding formulae obtained previously by Vekslerchik
[24]. The functional representations obtained in the case of the other derivative NLS hierarchies
did not yet appear in the literature, according to our knowledge. In any case, the generalizations
to noncommuting dependent variables appear to be new.

The results of [27] and the present work also demonstrate that certain properties of
integrable hierarchies are surprisingly easily obtained from the formulation in terms of E(λ),
which has to solve the zero curvature conditions in the form (3.1). Regarding E(λ) as a
parallel transport operator taking objects at t to objects at t − [λ], equation (3.1) attains the
interpretation of a ‘discrete’ zero curvature condition14, which is depicted in the following
(commutative) diagram:

Equation (3.1) has the following gauge invariance:

E(λ) �→ G−[λ] • E(λ) • G•−1 (4.1)

with an invertible G ∈ A. If one finds such a transformation with a nontrivial dependence on ζ ,
it gives rise to a Bäcklund transformation. Corresponding examples and further explorations
of (3.1) and its multi-component generalizations will be presented in a separate work.

14 Equation (3.1) can be interpreted as ‘discrete’ in the sense of [51]. See also [54, 55] for a general approach towards
integrable systems via discrete zero curvature equations.
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Appendix A. Some elementary notes on deformations of associative algebras

Although in the context of this work the question of inequivalent deformations of associative
products addressed by the cohomological methods of deformation theory [56, 57] appears to
be of minor importance, corresponding considerations help to find particular deformations (see
also [15, 16] and [8] for the Lie algebra case). The following is an elementary approach and
we refer the reader to the literature for more substantial treatments. Let A be an associative
algebra. Here, we are only looking for associative deformations depending linearly on a
parameter, say ζ ,

A • B := AB + ζ�(A,B), (A.1)

where � is a bilinear mapping A × A → A. Several examples appeared in the main part of
this work. Associativity imposes the following conditions on �,

A�(B,C) − �(AB,C) + �(A,BC) − �(A,B)C = 0 (A.2)

and

�(A,�(B,C)) = �(�(A,B), C). (A.3)

The last relation means that � defines an associative product, the other relation tells us that �

is a coboundary. This is a compatibility condition for the two products. If � is a cocycle, so
that there is a linear mapping N : A → A such that

�(A,B) = N(A)B + AN(B) − N(AB), (A.4)

then (A.2) is solved and (A.3) takes the form

AT (B,C) − T (AB,C) + T (A,BC) − T (A,B)C = 0, (A.5)

where

T (A,B) := N(N(A)B + AN(B) − N(AB)) − N(A)N(B) (A.6)

is the Nijenhuis torsion of N. Thus, T has to be a coboundary. (A.5) in turn is solved if T is a
cocycle, i.e., if there is a linear mapping f : A → A such that

T (A,B) = Af (B) − f (AB) + f (A)B. (A.7)

A simple solution is given by f = 0, which implies the associative Nijenhuis relation (see
also [15, 58, 59], for example)

N(A)N(B) = N(AN(B) + N(A)B − N(AB)). (A.8)

Example 1. Let us fix an element P ∈ A. Then,

N(A) = PA (A.9)

solves (A.8) and we have

�(A,B) = APB. (A.10)

Example 2. Let A �→ Â be an involution of A, so that ÂB = ÂB̂. Setting

N(A) := 1
2A(−) where A(±) := 1

2 (A ± Â), (A.11)

T is a cocycle with f (A) = −(1/8)A(−) and

�(A,B) = A(−)B(−). (A.12)

Note that the involution leads to a direct sum decomposition A = A(+) ⊕ A(−) where A(+)

is a subalgebra and A(+)A(−) ⊂ A(−),A(−)A(+) ⊂ A(−) and A(−)A(−) ⊂ A(+). In particular,
every Z2-graded algebra has an obvious involution (see also [60] for the Lie algebra case).
This includes the important cases of Clifford and super-algebras.
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Appendix B. ‘Undeforming’ the product

Let us recall the definition of the product used in section 2.1.1 (see also example 1 in
appendix A),

A • B = APB + ζA(I − P)B (B.1)

where I is the unit matrix and P 2 = P . By a direct calculation one verifies that this product
satisfies

Q(A • B)Q = (QAQ)(QBQ) (B.2)

with

Q := P + z(I − P), ζ = z2. (B.3)

For example, for 2 × 2 matrices

A =
(

a b

c d

)
, P =

(
1 0
0 0

)
, (B.4)

we have

Q =
(

1 0
0 z

)
, QAQ =

(
a zb

zc z2d

)
. (B.5)

With V given by (2.2) we associate

V̂ := QV Q = v0 + v1z
−2 + v2z

−4 + · · · (B.6)

where the coefficients vn = QunQ now exhibit an explicit z-dependence. The hierarchy
equations

Vtn = (ζ nV )�0 • V − V • (ζ nV )�0 (B.7)

can then be written in terms of V̂ as

V̂tn = (z2nV̂ )�0V̂ − V̂ (z2nV̂ )�0, (B.8)

if we agree upon the rule that the projection ( )�0 does not take the ‘inner’ z-dependence of
the vn into account (i.e., the z-dependence shown in the last matrix in (B.5)). In this way,
contact is made with previous formulations of hierarchies of the type considered in this work
(see, in particular, [23, 24]). By use of deformed products one achieves a much more elegant
formulation, according to our opinion (and remains in the class of ‘Gelfand–Dickey-type’
hierarchies).
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